Dedication

We gratefully dedicate the 2014 Annual Report of the California Joint Replacement Registry to Kevin Bozic, MD, MBA. The CJRR is the product of Kevin’s vision, leadership, passion, and commitment to optimizing the value of hip and knee replacement care in California and beyond.

CJRR Contents

About CJRR ... 2
Introduction ... 2
Overall Results 3
Patient-Reported Outcomes 5
Procedural Data Metrics 9
Principal Diagnoses for Hip and Knee Replacements ... 10
Length of Stay 11
Comorbidities and Adverse Events 11
CJRR Appendix 13
CJRR References 14
Foreword

From CJRR’s Medical Director

The data presented in this 2014 Annual Report of the California Joint Replacement Registry were collected between April 1, 2011 and May 20, 2015. Since the initial progress report was released in 2014, the volume of cases in CJRR has nearly doubled, while the volume of hospitals and surgeons that contribute cases has tripled. The data included in this report—on 8,130 knee replacements and 6,023 hip replacements—were submitted by 163 surgeons at 26 hospitals. Thirteen more hospitals are in the process of joining CJRR.

CJRR was created to meet the need for comprehensive, scientific assessment of devices, treatment protocols, surgical approaches, and patient factors that influence the outcomes of hip and knee replacement operations. Founded in 2009 by the California HealthCare Foundation (CHCF), the Pacific Business Group on Health (PBGH), and the California Orthopaedic Association (COA), the Registry was designed to serve as a resource for evidence-based comparative effectiveness by pooling and analyzing data from surgeons and hospitals across California. CJRR enables improved decision-making for patients, purchasers, physicians, hospitals, and other providers by gathering and promoting performance information on hip and knee replacements.

CJRR plays a unique role because it collects and incorporates clinical information and direct feedback from patients about the outcomes of hip and knee replacements. CJRR is at the forefront of this work, as it is one of only a handful of multi-institutional, orthopaedic Level III registries in the country. Level III registries include patient-reported outcome (PRO) data as well as payer, provider, clinical, surgical, laboratory, pharmacy, and device information.

CJRR is supported by many large purchasers of health care in California:

- Anthem, Blue Shield, and Cigna have provided funding to CJRR
- Model contracts for Covered California, the state-run individual health insurance exchange, include CJRR
- The PBGH Negotiating Alliance has included CJRR metrics in its selection criteria for its Center of Excellence programs
- The California Public Employees’ Retirement System (CalPERS), an agency that manages health benefits for more than 1.6 million Californians, has highlighted CJRR participants in its member facing materials and on www.castlighthealth.com, indicating that CJRR participants collect patient-reported outcomes and participate in the Registry

CJRR achieved two important objectives in 2015. The first was the release of hospital-level, risk-adjusted, patient-reported outcome scores in March 2015. The second was the announcement on April 1, 2015 that CJRR is now affiliated with the American Joint Replacement Registry (AJRR). Under the current agreement, AJRR has assumed responsibility for CJRR’s operations during an 18-month transition period. AJRR is anticipated to assume full responsibility for CJRR in 2018. Staffs from both CJRR and AJRR continue to collaborate in the recruitment of hospitals in California.

There are many people who deserve recognition for getting CJRR to this stage of development. For their vision and leadership, Kevin Bozic, David Lansky, Mark Smith, and Sandra Hernandez deserve thanks. Stephanie Teleki, Ernie Valente, Rachel Brodie, and Kate Eresian Chenok’s contributions have been invaluable. I would like to acknowledge the current members of the California Data Use Group who continue to keep us on track: David Lewallen, Zhongmin Li, Jay Patel, Nelson SooHoo, Walter Sujansky, Stephanie Teleki, Margo Sims, Diane Przepiorski, and David Hopkins. I am grateful to the staff of the AJRR who carry on our mission by handling the day-to-day operations of CJRR. Finally, none of this would be possible without the dedication of the contributing surgeons and hospitals who embrace our mission of improving patient care and informing choices.

In this report, we have expanded on our previous reporting of risk-adjusted, patient-reported outcomes at the hospital level. Currently, all hospitals in CJRR that had sufficient longitudinal patient-reported survey data to report were graded as “average” for WOMAC, VR-12, and UCLA scores. We anticipate this will change as CJRR continues to grow. Improving data collection rates for all metrics remains an active area of investigation for CJRR. Despite developing a comprehensive risk-adjustment model for perioperative complications (Level II data), we have declined to report these data publicly as the model has not achieved acceptable statistical significance. In addition, re-admission and perioperative complications rates are reported publicly by other entities in contrast to our patient-reported outcome results, which have been more difficult for patients to access until now.

We remain engaged in several other exciting projects. We are prepared to address any data issues that arise with the transition to ICD-10. We continue our efforts to share certain data elements with Kaiser Permanente’s National Implant Registries to collectively paint a broader view of the quality of hip and knee replacement care in California. Between CJRR and Kaiser, we would capture over 50% of hip and knee replacements performed annually in California. In an effort to improve awareness of our participating hospitals and surgeons, we have paired with the California Hospital Assessment and Ratings Task Force, who will publish CJRR hospital-level enrollment data on their website in the near future.

We are grateful to the many CJRR stakeholders who have worked together to make this effort a success. We hope you find the information in this report informative.

Sincerely,

James I. Huddleston, III, MD
Medical Director, California Joint Replacement Registry
Introduction

The health care landscape is changing. New tools are available for measuring health outcomes. There also is a rise in the public reporting of provider performance, and a strong focus on providing data on quality and value. While these data are becoming more readily available, there is still limited actionable data on outcomes associated with joint replacement surgery. CJRR is positioned to play a major role in making this information available to help surgeons and hospitals in California deliver better outcomes, patients to identify the highest quality providers, and payers to reward high-performing providers.

With more than 90,000 procedures performed and over $8.1 billion in annual hospital and surgeon charges in California alone, hip and knee replacements are among the highest volume and highest cost surgeries for both Medicare and private payers. Moreover, the volume of joint replacements is expected to continue its rapid growth with a projected yearly rate of over four million procedures in the United States by 2030. CJRR is providing critical information on quality and patient outcomes that will enable better decision-making by patients, purchasers, physicians, hospitals, and other providers, thereby improving the overall quality of care for these surgeries.

Research shows that hip and knee replacement procedures can successfully alleviate pain and improve function for patients who suffer from disabling arthritis of the hip and knee. Despite these benefits, as volume and costs increase, there is a largely unmet need for continuous, comprehensive, scientific assessment of devices, treatment protocols, surgical approaches, and identification of patient factors influencing the outcomes of these surgeries.
Overall Results

CJRR collects detailed case information from its registered patients, including approximately 140 data elements related to patient demographics, clinical and surgical data, and patient-reported outcomes (PROs). CJRR directly surveys patients about their pain and function before and at set intervals after their surgery. CJRR data are captured electronically from surgeons and hospitals and use ICD-9 codes, as well as other clinical information submitted by hospitals and physicians. These data include information on implants and surgical approach that will be used to identify potential patient safety issues and contribute to comparative effectiveness research.

CJRR now includes information from more than 14,000 cases (see Figure 1). CJRR is one of only a handful of registries in the United States that collects and reports feedback directly from patients concerning outcomes of their hip and knee replacement surgeries along with clinical and surgical data. As shown in Figure 2, CJRR hospital participants represent a range of sizes.

Figure 1: Cumulative Case Volume (N=14,153)

![Cumulative Case Volume Graph]

Figure 2: CJRR Participants by Size (N=26)

![Participants by Size Graph]

Source: California Office of Statewide Health Planning and Development (OSHPD)

Small = 1-99 beds; Medium = 100-399 beds; Large = 400+ beds
Table 1: CJRR Participants and Cases Reported through August 2015

<table>
<thead>
<tr>
<th>Facility</th>
<th>Date Joined CJRR</th>
<th>Cases Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta Bates Summit Medical Center, Alta Bates Campus</td>
<td>9/17/12</td>
<td>299</td>
</tr>
<tr>
<td>Alta Bates Summit Medical Center, Summit Campus</td>
<td>9/17/12</td>
<td>338</td>
</tr>
<tr>
<td>California Pacific Medical Center</td>
<td>10/16/14</td>
<td>5</td>
</tr>
<tr>
<td>Cedars-Sinai Medical Center</td>
<td>5/9/11</td>
<td>762</td>
</tr>
<tr>
<td>Dameron Hospital</td>
<td>11/5/13</td>
<td>181</td>
</tr>
<tr>
<td>Dignity Health Methodist Hospital, Sacramento</td>
<td>3/18/14</td>
<td>184</td>
</tr>
<tr>
<td>Dignity Health St. Bernardine Medical Center</td>
<td>10/15/13</td>
<td>14</td>
</tr>
<tr>
<td>Eisenhower Medical Center</td>
<td>10/28/13</td>
<td>313</td>
</tr>
<tr>
<td>Hoag Orthopedic Institute</td>
<td>4/7/11</td>
<td>5,598</td>
</tr>
<tr>
<td>John Muir Medical Center, Concord</td>
<td>12/18/12</td>
<td>363</td>
</tr>
<tr>
<td>John Muir Medical Center, Walnut Creek</td>
<td>10/9/12</td>
<td>828</td>
</tr>
<tr>
<td>Lodi Memorial Hospital</td>
<td>3/10/14</td>
<td>87</td>
</tr>
<tr>
<td>Long Beach Memorial</td>
<td>10/6/14</td>
<td>74</td>
</tr>
<tr>
<td>Memorial Medical Center - Modesto</td>
<td>12/8/14</td>
<td>9</td>
</tr>
<tr>
<td>Mills-Peninsula Health Services</td>
<td>5/6/13</td>
<td>224</td>
</tr>
<tr>
<td>Novato Community Hospital</td>
<td>12/3/14</td>
<td>10</td>
</tr>
<tr>
<td>Orange Coast Memorial</td>
<td>9/23/14</td>
<td>80</td>
</tr>
<tr>
<td>PIH Health Hospital - Whittier</td>
<td>3/4/13</td>
<td>673</td>
</tr>
<tr>
<td>Saddleback Memorial - Laguna Hills</td>
<td>9/30/14</td>
<td>108</td>
</tr>
<tr>
<td>Scripps Green Hospital</td>
<td>8/19/13</td>
<td>163</td>
</tr>
<tr>
<td>St. Joseph Hospital (Orange, CA)</td>
<td>11/12/12</td>
<td>282</td>
</tr>
<tr>
<td>St. Jude Medical Center (Fullerton, CA)</td>
<td>8/12/13</td>
<td>244</td>
</tr>
<tr>
<td>Stanford Health Care</td>
<td>9/12/12</td>
<td>1,192</td>
</tr>
<tr>
<td>Sutter Medical Center, Sacramento</td>
<td>2/13/13</td>
<td>111</td>
</tr>
<tr>
<td>Tri-City Medical Center</td>
<td>4/15/14</td>
<td>117</td>
</tr>
<tr>
<td>University of California, San Francisco Medical Center</td>
<td>3/1/11</td>
<td>1,894</td>
</tr>
</tbody>
</table>
Patient-Reported Outcomes

As mentioned earlier, CJRR collects information directly from patients, using several standardized surveys.

- The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), a 24-question survey, assesses a patient’s hip and knee pain, stiffness, and function on a scale of 0 to 100, with 100 being maximum function and minimum pain, by asking questions related to a patient’s activities such as:
 - “How much pain do you have when walking on a flat surface? ‘‘or sitting?’’
 - “How severe is your stiffness when you first wake up in the morning?’’
 - “How much difficulty do you have when getting up from a sitting position?’’

- The Veterans Rand 12-Item Health Survey (VR-12) assesses a patient’s general quality of life (physical and mental components scores) with 12 questions. As with the WOMAC, the VR-12 has a scale of 0 to 100, with 100 indicating the best health.

- The UCLA Activity Score surveys a patient’s hip and knee pain and function on a 10-point scale from a 1 – “wholly inactive: dependent upon others; cannot leave residence,” to a 5 – “sometimes participate in moderate activities,” to a 10 – “regularly participate in impact sports, such as jogging, tennis, skiing, acrobatics, ballet, heavy labor, or backpacking.” This score is generated from a single question.

CJRR offers multiple options for PRO survey completion. Patients can complete their PRO surveys online using a secure CJRR web-based interface (on a phone, computer, or tablet), or in paper form, which can be sent directly to CJRR via secure electronic fax. This reduces the administrative burden on surgeons and staff and ensures that PRO collection is uniform and complete. It’s estimated that it takes patients 15–30 minutes to answer these 37 questions in the three surveys. See CJRR Appendix A.

PRO Results

Figure 3: WOMAC Hip and Knee Mean Scores Pre-Surgery and One Year Post-Surgery (N=13,938)
Table 2: Change in WOMAC Score Pre-Surgery and One Year Post-Surgery, by Hospital*

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Patients Who Had Surgery and Were Eligible to Take a Survey</th>
<th>Number of Eligible Patients Who Completed Both Pre-op and 1-Year PRO, N (%)</th>
<th>Case Mix-Adjusted Percentage of Patients Who Reported Meaningful Improvement</th>
<th>Performance Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta Bates Summit Medical Center, Alta Bates Campus</td>
<td>217</td>
<td>69 (31.8%)</td>
<td>80.1%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Cedars-Sinai Medical Center</td>
<td>569</td>
<td>81 (14.2%)</td>
<td>83.5%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>John Muir Medical Center, Concord</td>
<td>142</td>
<td>33 (23.2%)</td>
<td>92.8%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Eisenhower Medical Center</td>
<td>120</td>
<td>88 (73.3%)</td>
<td>95.4%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Hoag Orthopedic Institute</td>
<td>3,764</td>
<td>442 (11.7%)</td>
<td>89.0%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>PIH Health Hospital - Whittier</td>
<td>346</td>
<td>49 (14.2%)</td>
<td>87.4%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>St. Joseph Hospital (Orange, CA)</td>
<td>187</td>
<td>75 (40.1%)</td>
<td>88.9%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>St. Jude Medical Center (Fullerton, CA)</td>
<td>166</td>
<td>40 (24.1%)</td>
<td>90.5%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Stanford Health Care</td>
<td>500</td>
<td>101 (20.2%)</td>
<td>88.0%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Alta Bates Summit Medical Center, Summit Campus</td>
<td>255</td>
<td>75 (29.4%)</td>
<td>87.0%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>University of California, San Francisco Medical Center</td>
<td>999</td>
<td>576 (57.7%)</td>
<td>88.1%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>John Muir Medical Center, Walnut Creek</td>
<td>325</td>
<td>53 (16.3%)</td>
<td>88.8%</td>
<td>★★★★★</td>
</tr>
</tbody>
</table>

*For hospitals with >30 eligible patients who completed both pre-surgical and 1 year post-surgical PROs.

Figure 4: VR-12 Hip and Knee Mean Scores for Physical and Mental Component Scores, Pre-Surgery and One Year Post-Surgery (N=12,882)
Table 3: Change in VR-12 Physical and Mental Scores Pre-Surgery and One Year Post-Surgery by Hospital*

Change in VR-12 Physical Score

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Patients Who Had Surgery and Were Eligible to Take a Survey</th>
<th>Number of Eligible Patients Who Completed both Pre-op and 1-Year PRO, N (%)</th>
<th>Case Mix-Adjusted Percentage of Patients Who Reported Meaningful Improvement</th>
<th>Performance Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta Bates Summit Medical Center, Alta Bates Campus</td>
<td>217</td>
<td>75 (34.6%)</td>
<td>58.6%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Cedars-Sinai Medical Center</td>
<td>569</td>
<td>82 (14.4%)</td>
<td>72.2%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>John Muir Medical Center, Concord</td>
<td>142</td>
<td>32 (22.5%)</td>
<td>80.8%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Eisenhower Medical Center</td>
<td>120</td>
<td>88 (73.3%)</td>
<td>80.5%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>PIH Health Hospital - Whittier</td>
<td>346</td>
<td>50 (14.5%)</td>
<td>74.3%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>St. Joseph Hospital (Orange, CA)</td>
<td>187</td>
<td>76 (40.6%)</td>
<td>74.3%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>St. Jude Medical Center (Fullerton, CA)</td>
<td>166</td>
<td>44 (26.5%)</td>
<td>77.7%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Stanford Health Care</td>
<td>500</td>
<td>102 (20.4%)</td>
<td>69.9%</td>
<td>★★★★</td>
</tr>
<tr>
<td>Alta Bates Summit Medical Center, Summit Campus</td>
<td>255</td>
<td>88 (34.5%)</td>
<td>72.1%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>University of California, San Francisco Medical Center</td>
<td>999</td>
<td>587 (58.8%)</td>
<td>71.2%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>John Muir Medical Center, Walnut Creek</td>
<td>325</td>
<td>54 (16.6%)</td>
<td>76.0%</td>
<td>★★★★★</td>
</tr>
</tbody>
</table>

Change in VR-12 Mental Score

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Patients Who Had Surgery and Were Eligible to Take a Survey</th>
<th>Number of Eligible Patients Who Completed both Pre-op and 1-Year PRO, N (%)</th>
<th>Case Mix-Adjusted Percentage of Patients Who Reported Meaningful Improvement</th>
<th>Performance Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta Bates Summit Medical Center, Alta Bates Campus</td>
<td>217</td>
<td>75 (34.6%)</td>
<td>30.4%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Cedars-Sinai Medical Center</td>
<td>569</td>
<td>82 (14.4%)</td>
<td>39.2%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>John Muir Medical Center, Concord</td>
<td>142</td>
<td>32 (22.5%)</td>
<td>37.6%</td>
<td>★★★★</td>
</tr>
<tr>
<td>Eisenhower Medical Center</td>
<td>120</td>
<td>88 (73.3%)</td>
<td>49.2%</td>
<td>★★★★</td>
</tr>
<tr>
<td>PIH Health Hospital - Whittier</td>
<td>346</td>
<td>50 (14.5%)</td>
<td>36.2%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>St. Joseph Hospital (Orange, CA)</td>
<td>187</td>
<td>76 (40.6%)</td>
<td>42.2%</td>
<td>★★★★</td>
</tr>
<tr>
<td>St. Jude Medical Center (Fullerton, CA)</td>
<td>166</td>
<td>44 (26.5%)</td>
<td>43.7%</td>
<td>★★★★</td>
</tr>
<tr>
<td>Stanford Health Care</td>
<td>500</td>
<td>102 (20.4%)</td>
<td>47.0%</td>
<td>★★★★</td>
</tr>
<tr>
<td>Alta Bates Summit Medical Center, Summit Campus</td>
<td>255</td>
<td>88 (34.5%)</td>
<td>33.1%</td>
<td>★★★★</td>
</tr>
<tr>
<td>University of California, San Francisco Medical Center</td>
<td>999</td>
<td>587 (58.8%)</td>
<td>36.9%</td>
<td>★★★★</td>
</tr>
<tr>
<td>John Muir Medical Center, Walnut Creek</td>
<td>325</td>
<td>54 (16.6%)</td>
<td>36.9%</td>
<td>★★★★</td>
</tr>
</tbody>
</table>

*For hospitals with >30 eligible patients who completed both pre-surgical and 1 year post-surgical PROs.
Figure 5: UCLA Hip and Knee Mean Scores Pre-Surgery and One Year Post-Surgery (N=12,120)

Table 4: Change in UCLA Score Pre-Surgery and One Year Post-Surgery, by Hospital*

<table>
<thead>
<tr>
<th>Hospital</th>
<th>Patients Who Had Surgery and Were Eligible to Take a Survey</th>
<th>Number of Eligible Patients Who Completed both Pre-op and 1-Year PRO, N (%)</th>
<th>Case Mix-Adjusted Percentage of Patients Who Reported Meaningful Improvement</th>
<th>Performance Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alta Bates Summit Medical Center, Alta Bates Campus</td>
<td>217</td>
<td>76 (35.0%)</td>
<td>61.1%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Cedars-Sinai Medical Center</td>
<td>569</td>
<td>77 (13.5%)</td>
<td>71.6%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>John Muir Medical Center, Concord</td>
<td>142</td>
<td>31 (21.8%)</td>
<td>62.7%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Eisenhower Medical Center</td>
<td>120</td>
<td>88 (73.3%)</td>
<td>76.4%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Hoag Orthopedic Institute</td>
<td>3,764</td>
<td>429 (11.4%)</td>
<td>66.9%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>PIH Health Hospital - Whittier</td>
<td>346</td>
<td>49 (14.2%)</td>
<td>71.2%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>St. Joseph Hospital (Orange, CA)</td>
<td>187</td>
<td>73 (39.0%)</td>
<td>70.1%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>St. Jude Medical Center (Fullerton, CA)</td>
<td>166</td>
<td>48 (28.9%)</td>
<td>52.5%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Stanford Health Care</td>
<td>500</td>
<td>99 (19.8%)</td>
<td>67.7%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>Alta Bates Summit Medical Center, Summit Campus</td>
<td>255</td>
<td>89 (34.9%)</td>
<td>50.6%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>University of California, San Francisco Medical Center</td>
<td>999</td>
<td>586 (58.7%)</td>
<td>64.8%</td>
<td>★★★★★</td>
</tr>
<tr>
<td>John Muir Medical Center, Walnut Creek</td>
<td>325</td>
<td>53 (16.3%)</td>
<td>60.5%</td>
<td>★★★★★</td>
</tr>
</tbody>
</table>

*For hospitals with >30 eligible patients who completed both pre-surgical and 1 year post-surgical PROs.
Procedural Data Metrics

Figure 6: Cumulative Case Volume by Procedure Type (N= 14,153)

- **Primary Knee** n=7,560 (53.4%)
- **Primary Hip** n=5,294 (37.4%)
- **Hip Revision** n=695 (4.9%)
- **Knee Revision** n=562 (3.9%)
- **Hip Resurfacing** n=42 (0.4%)

Figure 7: Age Distribution of Cases in CJRR, California, and United States, by Procedure

- **Primary Hip** (N=6,023 CJRR Cases)
 - 18-64: 44.7%
 - 65-84: 49.5%
 - 85+: 48.7%

- **Primary Knee** (N=8,129 CJRR Cases)
 - 18-64: 53.2%
 - 65-84: 57.8%
 - 85+: 44.2%

Figure 8: CJRR Cases by Procedure and Gender (N=14,152)

- **Hip** n=6,023
 - Male n=2,751 (45.7%)
 - Female n=3,272 (54.3%)

- **Knee** n=8,129
 - Male n=3,306 (40.7%)
 - Female n=4,823 (59.3%)

Principal Diagnoses for Hip and Knee Replacements

Patients may require hip or knee replacements due to damage to the joints from a variety of causes. The most common diagnosis found in CJRR for hip and knee replacement is osteoarthritis (Figure 10). The major diagnosis categories for patients in CJRR are similar to national and international trends.

Unfortunately, many hip and knee replacements have to be revised (i.e. redone). Between 1990 and 2002, the mean hip revision rate of 17.5% and the mean knee revision rate of 8.2% remained stable in the United States1. In contrast, Sweden credits its registry programs for reducing the national hip revision rate to 7.5% and its knee revision rate to 6.4%3. In addition to the significant burden that a revision means to patients, such procedures are also very costly. Average hospital cost estimates for revision surgery range from $19,000 to $31,0004,5. Registries can be helpful in providing information on device failures and targeting areas for improvement.

The most common reasons for revision of total knee or total hip replacement are device loosening or failure, dislocation and instability, and infections (Figure 10).

Figure 9: Mean Body Mass Index (BMI) by Procedure and Gender (N=14,152)

Figure 10: Principal Diagnoses (N=13,905)
Length of Stay

Much of the cost related to a total joint replacement comes from the length of stay (LOS) in a hospital. As seen in Figure 11, CJRR hospitals have lower lengths of stay than California and U.S. hospitals.

Figure 11: Mean Length of Stay (N=12,691)

![Mean Length of Stay Chart]

Comorbidities and Adverse Events

Figure 12: Observed Comorbidities (N=13,433)

CJRR observed these major conditions in its population of patients:

- Body Mass Index (BMI) >40
- American Society of Anesthesiologists (ASA) Class III/IV
- Bilateral Replacement
- Diabetes
- Immunocompromised status
- Obesity
- Hypertension
- Myocardial Infarction (MI)
- Coronary Artery Disease (CAD)
- Congestive Heart Failure (CHF)
- Peripheral Artery Disease (PAD)
- Chronic Lung Disease (CLD)
- Venous Thromboembolism (VTE)
Figure 13: Observed 90-Day Adverse Events (N=1,167)

![Bar graph showing observed 90-day adverse events](chart)

Figure 14: Rates of 90-day Adverse Events, Number of Comorbidities (N=13,433)

![Bar graph showing rates of 90-day adverse events by number of comorbidities](chart)
CJRR Appendix A

CJRR Methodology for Reporting
Meaningful Change in Risk-Adjusted Patient-Reported Outcomes

Risk-Adjustment for Patient-Reported Outcomes of Total Joint Replacement Surgeries
California Joint Replacement Registry
February 4, 2015

Background
The California Joint Replacement Registry (CJRR) plans to publicly report risk-adjusted patient reported outcomes (PRO) for joint replacement surgeries in CJRR-participating hospitals. Risk-adjustment controls for diseases and conditions and other patient characteristics that vary from hospital to hospital and may cause PROs to vary because of circumstances outside of a provider’s control. These PRO results are based on data collected in CJRR about surgeries that occurred from April 1, 2011 through November 6, 2014. The calculations are current as of December 31, 2014.

Model Development

Patient Sample
Patients undergoing primary total hip or primary total knee replacement (unilateral or bilateral) were included in the risk adjustment modeling and subsequent public reporting. Patients with pathological fractures or malignant neoplasms (primary or metastatic cancer) were excluded. See the accompanying list for excluded codes. A total of 5,780 eligible patients were registered by CJRR during the study period beginning April 1, 2011 through November 6, 2014, at 14 participating hospital sites. Cases are eligible if at least one year has elapsed since the procedure occurred. Cases are complete if the patient has finished a pre-procedure PRO survey and also a one-year post-procedure PRO survey. There were 1,155 completed cases. The hospital response rate is the number of complete cases divided by the number of eligible cases. These PRO scores and performance outcome results are based on data collected in CJRR about surgeries that occurred from April 1, 2011 to November 6, 2014. The calculations are current as of December 31, 2014.

PRO Measure
CJRR collects PRO data using three distinct surveys: Veterans Rand 12-Item Health Survey (VR-12), Western Ontario and McMaster Universities Arthritis Index (WOMAC), and the UCLA Activity Index. The PRO measure that CJRR will report publicly at this time is the WOMAC, which is a condition-specific survey that asks patients about symptoms, pain, stiffness, and the patient’s ability to perform various routine activities of daily life that are progressively more physically demanding.

From the WOMAC data, the specific outcome measure to be reported is the percentage of WOMAC respondents that had Minimal Clinically Important Differences (MCID) between pre- and post- WOMAC scores. Survey responses sometimes have statistically significant differences that are associated with small clinical changes. The MCID accounts for this, making sure that all patients who are counted as having positive post-procedure change have meaningful changes in their WOMAC scores.

Exclusion Codes Used in CJRR PRO Measure
170.6 Malignant neoplasm of pelvic bones sacrum and coccyx
170.7 Malignant neoplasm of long bones of lower limb
170.9 Malignant neoplasm of short bones of lower limb
195.3 Malignant neoplasm of pelvis
195.5 Malignant neoplasm of lower limb
198.5 Secondary malignant neoplasm of bone and bone marrow
199.0 Disseminated malignant neoplasm
733.1 Pathological fracture unspecified site
733.14 Pathological fracture of neck of femur
733.15 Pathological fracture of other specified part of femur
733.19 Pathological fracture of other specified site
733.8 Malunion and nonunion of fracture
733.81 Malunion of fracture
733.82 Nonunion of fracture
733.95 Stress fracture of other bone
733.96 Stress fracture of femoral neck
733.97 Stress fracture of shaft of femur
808.0 Closed fracture of acetabulum
808.1 Open fracture of acetabulum
808.2 Closed fracture of pubis
808.3 Open fracture of pubis
808.41 Closed fracture of ilium
808.42 Closed fracture of ischium
808.43 Multiple closed pelvic fractures with disruption of pelvic circle
808.44 Multiple closed pelvic fractures without disruption of pelvic circle
808.49 Closed fracture of other specified part of pelvis
808.50 Open fracture of other specified part of pelvis
808.51 Open fracture of ilium
808.52 Open fracture of ischium
808.53 Multiple open pelvic fractures with disruption of pelvic circle
808.54 Multiple open pelvic fractures without disruption of pelvic circle
808.8 Unspecified closed fracture of pelvis
820 Fracture of neck of femur
820.0 Transcervical fracture closed
820.00 Fracture of unspecified intracapsular section of neck of femur closed
820.01 Fracture of epiphysis (separation) (upper) of neck of femur closed
820.02 Fracture of midcervical section of femur closed
820.03 Fracture of base of neck of femur closed
820.09 Other transcervical fracture of femur closed
820.1 Transcervical fracture open
820.10 Fracture of unspecified intracapsular section of neck of femur open
820.11 Fracture of epiphysis (separation) (upper) of neck of femur open
Risk Adjustment Methods
The risk-adjustment approach used in CJRR compares the 95% confidence interval of each hospital’s risk-adjusted PRO MCID rate (RAR) to all participating hospitals’ overall PRO MCID rate to identify hospital performance “Better” or “Worse” outliers. The risk-adjusted PRO results represent what a hospital’s PRO MCID rate would have been if the hospital had a patient case mix identical to the reference population. For CJRR, the reference population is the patient population of all CJRR participating hospitals. A hospital’s RACR is calculated by dividing the hospital’s observed PRO MCID rate by the hospital’s expected PRO MCID rate (obtained from the risk model calculation) to get the observed/expected (O/E) ratio. If the O/E ratio is greater than one, the hospital has a higher PRO MCID rate than expected given its patient mix. If the O/E ratio is less than one, the hospital has a lower PRO MCID rate than expected. The O/E ratio is then multiplied by the overall PRO MCID rate of all participating hospitals to obtain the hospital’s risk-adjusted PRO MCID rate.

Statistical Analysis
All candidate risk factors were entered into a stepwise, backward-selection logistic regression model. Candidate risk factors included age, gender, race (Caucasian), ASA Class, ASA Class grouped, hip vs. knee procedure, multiple simultaneous procedures, diabetes, immunocompromised status, obese, hypertension history, MI history, CAD History, CLD history, VTE history, count of risk factors, surgery year, and median household income. These variables were collected from patient records where available and reported by participating hospitals. Patients with missing data for these variables were assigned a value not associated with MCIDs. For example, a patient with missing BMI would be assigned an obese score of “No.”

The variable selection method required an individual predictor to be associated with PRO MCID at the 0.05 level of significance to be retained. Predictor variables that did not meet this level of significance were dropped. A final risk model was specified by keeping all predictor variables that met the 0.05 level of significance in the automated selection method, and by adding additional variables that were not statistically significant but were clinically meaningful.

The CJRR Reporting Subcommittee determined that the resulting risk adjustment model had adequate fit (Hosmer-Lemesow lack-of-fit chi-square = 0.299, n.s.), and that it was adequately predictive (c=0.78).

Final Risk Adjustment Variables
The final risk adjustment regression model included several patient-level variables known to be associated with improved patient-reported outcomes:

- Preoperative WOMAC score
- Age: Patient age in years at the time of surgery
- Gender: Male / Female
- Race: Caucasian / Other
- ASA Physical Status Classification System score: (III/IV) / (I/II)
- Obese: Body Mass Index (BMI) score of 30 greater
- Diabetes: Yes / No
- Hypertension History: Yes / No
- Chronic Lung Disease History: Yes / No
- Hip vs. Knee Procedure

Calculation of Hospital Risk-Adjusted MCID Outcome
The risk-adjustment regression model was used to calculate expected MCIDs for each hospital using patient-level data. The expected PRO MCID rate was the number of expected MCIDs as predicted by the risk-adjustment model, divided by the total number of actual, eligible joint replacement surgery cases, multiplied by 100. The expected event rate is adjusted for the severity of the hospital’s case mix. The observed PRO MCID rate was the number of observed MCIDs divided by the total number of eligible joint replacement surgery cases, multiplied by 100.

The risk-adjusted MCID rate (RAR) was obtained by multiplying the population observed MCID rate (87.1%) by the hospital’s Observed / Expected ratio. The risk-adjusted event rate reflects the best estimate of what a provider’s MCID rate would have been if the provider had a patient case mix identical to the overall CJRR average. This rate is comparable among providers because it accounts for the differences in patient severity-of-illness.

Each provider’s performance rating was based on a comparison of the 95% confidence interval (CI) of each provider’s RAR to the population average MCID rate (87.1%). The Poisson exact probability method was used for computing the 95% CI for the RAR.

CJRR References

a Partial procedures, resurfacings, and revisions were excluded.
b http://www.womac.org/womac/index.htm
C Change in WOMAC Score between Pre-Op and 1-year Post-Op ≥ the Minimal Clinically Important Difference (0.5*standard deviation of mean change in scores).
Published by
American Joint Replacement Registry
9400 West Higgins Road, Suite 210
Rosemont, IL 60018-4975
Phone: 1-847-292-0530
Email: info@ajrr.net
www.ajrr.net

CJJR is a subsidiary of AJRR.

California Data Use Group (CDUG)
James I. Huddleston, III, MD – Medical Director – Stanford University
Kevin J. Bozic, MD, MBA – University of Texas at Austin
David S.P. Hopkins, PhD – Pacific Business Group on Health
David G. Lewallen, MD - American Joint Replacement Registry
Zhongmin Li, PhD – University of California, Davis
Jay J. Patel, MD – Hoag Orthopedic Institute
Diane Przepiorski – California Orthopaedic Association
Margo Sims – Patient Representative
Nelson SooHoo, MD – University of California, Los Angeles
Walter Sujansky, MD, PhD – Sujansky & Associates, LLC
Stephanie Teleki, PhD, MPH – California HealthCare Foundation

Staff Liaisons
Rachel DuPré Brodie – Pacific Business Group on Health
Philip J. Dwyer – American Joint Replacement Registry
Caryn D. Etkin, PhD, MPH – American Joint Replacement Registry
Jeffrey P. Knezovich, CAE – American Joint Replacement Registry

The material presented in CJRR’s 2014 Annual Report has been made available for educational purposes only. This material is not intended to present the only, or necessarily best, methods or procedures for the medical situations discussed, but rather is intended to represent an approach, view, statement, or opinion of the author(s) or producer(s), which may be helpful to others who face similar situations.

Any statements about commercial products and devices do not represent an AJRR/CJJR endorsement or evaluation of these products. These statements may not be used in advertising or for any commercial purpose.

© 2015 All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher.
At the time of Publication, every effort was made to ensure the information contained in this report was accurate. The document is available for download on the AJRR website.

©2015 All Rights Reserved